Snakeface Documentation
Release 0.0.18

Johannes Koester

Dec 30, 2021

1 Getting started with Snakemake Interface

2 Support

3 Resources
3.1 Getting Started
32 UseCases. . . v v v v v v it e e
3.3 The Snakeface API
34 Internal API

Python Module Index

Index

GETTING STARTED

Snakeface Documentation, Release 0.0.18

Snakeface is the Snakemake Interface, where you can easily run workflows. To learn more about Snakemake, visit the
official documentation

GETTING STARTED 1

https://discord.gg/NUdMtmr
https://github.com/snakemake/snakeface/stargazers
https://snakemake.readthedocs.io/

Snakeface Documentation, Release 0.0.18

2 GETTING STARTED

CHAPTER
ONE

GETTING STARTED WITH SNAKEMAKE INTERFACE

Snakeface can be used on your local machine to provide a nice interface to running snakemake workflows, or deployed
by a group to run shared workflows. See Use Cases for an overview of different use cases.

Snakeface Documentation, Release 0.0.18

4 Chapter 1. Getting started with Shakemake Interface

CHAPTER
TWO

SUPPORT

In case of questions, please post on stack overflow.

To discuss with other Snakemake users, you can use the mailing list. Please do not post questions there. Use
stack overflow for questions.

For bugs and feature requests, please use the issue tracker.

For contributions, visit Snakemake on Github.

https://stackoverflow.com/questions/tagged/snakemake
https://groups.google.com/forum/#!forum/snakemake
https://github.com/snakemake/snakeface/issues
https://github.com/snakemake/snakeface

Snakeface Documentation, Release 0.0.18

6 Chapter 2. Support

CHAPTER
THREE

RESOURCES

Snakemake Repository The Snakemake workflow manager repository houses the core software for Snakemake.

Snakemake Wrappers Repository The Snakemake Wrapper Repository is a collection of reusable wrappers that
allow to quickly use popular tools from Snakemake rules and workflows.

Snakemake Workflows Project This project provides a collection of high quality modularized and re-usable work-
flows. The provided code should also serve as a best-practices of how to build production ready workflows with
Snakemake. Everybody is invited to contribute.

Snakemake Profiles Project This project provides Snakemake configuration profiles for various execution environ-
ments. Please consider contributing your own if it is still missing.

Bioconda Bioconda can be used from Snakemake for creating completely reproducible workflows by defining the
used software versions and providing binaries.

3.1 Getting Started

Snakeface stands for “Snakemake Interface,” and it’s exactly that - an interface for you to easily run and interact with
Snakemake workflows. Although it is still in development, the overarching goal is to be flexible to different needs for
your deployment. This means that you can both run it quickly as a notebook to test a workflow locally, or deploy it in
a cluster environment for your user base. If you have a need for deployment that is not addressed here, please let us
know We recommend that you start by setting up the Example Workflow.

3.1.1 Installation

Snakeface can be installed and run from a virtual environment, or from a container.

Virtual Environment

First, clone the repository code.

$ git clone git@github.com:snakemake/snakeface.git
$ cd snakeface

Then you’ll want to create a new virtual environment, and install dependencies.

$ python -m venv env
$ source env/bin/activate
$ pip install -r requirements.txt

And install Snakeface (from the repository directly)

https://snakemake.readthedocs.org
https://snakemake-wrappers.readthedocs.org
https://github.com/snakemake-workflows/docs
https://github.com/snakemake-profiles/doc
https://bioconda.github.io/
https://github.com/snakemake/snakeface/issues
https://github.com/snakemake/snakeface/issues

Snakeface Documentation, Release 0.0.18

$ pip install -e

Install via pip

Snakeface can also be installed with pip.

$ pip install snakeface

Once it’s installed, you should be able to inspect the client!

$ snakeface —--help

usage: snakeface [-h] [--version] [--noreload] [--verbosity {0,1,2,3}]
[-—workdir [WORKDIR]] [-—-auth {token}] [--port PORT]
[--verbose] [--log-disable-color] [--log-use-threads]
[-—force]

[repo]
Snakeface: interface to

positional arguments:
repo

dest

optional arguments:
-h, —-help
—-—version
——noreload
--verbosity {0,1,2,3}

——workdir [WORKDIR]
——force

SETTINGS:
—-—auth {token}

NETWORKING :
--port PORT

LOGGING:
—-—verbose
--log-disable-color
—-—log-use-threads

actions:

[dest] {notebook}

snakemake.

Repository address and destination to deploy, e.g.,
<source> <dest>
Path to clone the repository, should not exist.

show this help message and exit
print the version and exit.
Tells Django to NOT use the auto-reloader.

Verbosity (0, 1, 2, 3).

Specify the working directory.

If the folder exists, force overwrite, meaning remove
and replace.

Authentication type to create for the interface,
defaults to token.

Port to serve application on.

verbose output for logging.
Disable color for snakeface logging.
Force threads rather than processes.

subparsers for Snakeface

{notebook}
notebook

snakeface actions
run a snakeface notebook

Chapter 3. Resources

Snakeface Documentation, Release 0.0.18

Setup

As a user, you most likely want to use Snakeface as an on demand notebook, so no additional setup is needed other
than installing the package. As we add more deployment types that warrant additional configuration, or in the case of
installing Snakeface as a cluster admin, you likely will want to install from the source repository (or a release) and edit
the settings.yml file in the snakemake folder before deploying your service. More information will be added as this is
developed. If you are interested, you can look at Settings.

3.1.2 Example Workflow
Downloading Tutorial

You likely want to start with an example workflow. We will use the same one from the snakemake tutorial
<https://snakemake.readthedocs.io/en/stable/tutorial/tutorial. html>_. We assume that you have already installed
snakeface (and thus Snakemake and it’s dependencies are on your system). So you can download the example
as follows:

$ mkdir snakemake-tutorial

$ cd snakemake-tutorial

$ wget https://github.com/snakemake/snakemake-tutorial-data/archive/v5.24.1.tar.gz
$ tar —--wildcards -xf v5.24.1.tar.gz —--strip 1 "«/data" "«/environment.yaml"

This should extract a data folder and an environment.yaml. You should also create the Snakefile
<https://snakemake.readthedocs.io/en/stable/tutorial/basics.html#summary>_. This Snakefile is the same as in the
tutorial, with the addition of adding the environment . yaml to each section.

SAMPLES = ["A", "B"]

rule all:
input:
"calls/all.vcft"

rule bwa_map:
input:
"data/genome.fa",
"data/samples/{sample}.fastg"
output:
"mapped_reads/{sample} .bam"
conda:
"environment.yaml"
shell:
"bwa mem {input} | samtools view -Sb - > {output}"

rule samtools_sort:

input:
"mapped_reads/{sample} .bam"

output:
"sorted_reads/{sample}.bam"

conda:
"environment.yaml"

shell:
"samtools sort -T sorted_reads/{wildcards.sample} "
"-0 bam {input} > {output}"

(continues on next page)

3.1. Getting Started 9

Snakeface Documentation, Release 0.0.18

(continued from previous page)

rule samtools_index:
input:
"sorted_reads/{sample}.bam"
output:
"sorted_reads/{sample}.bam.bai"
conda:
"environment.yaml"
shell:
"samtools index {input}"

rule bcftools_call:
input:
fa="data/genome.fa",
bam=expand ("sorted_reads/{sample}.bam", sample=SAMPLES),
bai=expand ("sorted_reads/{sample}.bam.bai", sample=SAMPLES)
output:
"calls/all.vct"
conda:
"environment.yaml"
shell:
"samtools mpileup -g —-f {input.fa} {input.bam} | "
"bcftools call —-mv - > {output}"

Running Snakeface

At this point, from this working directory you can run Snakeface. For example, you might run a Notebook. Make sure
to select ——use—conda or else the environment above won’t be properly sourced. This is one deviation from the
main Snakemake tutorial, which has you install dependencies on the command line before running the workflow, and

the workflow doesn’t have the conda sections.

3.1.3 Notebook

Make sure that before you run a notebook, you are comfortable with Snakemake and have a workflow with a Snakefile
read to run. If not, you can start with the instructions for an example workflow (Example Workflow).

Local Notebook

If you have installed Snakeface on your own, you likely want a notebook. You can run snakeface without any argu-
ments to run one by default: This works because the default install settings have set NOTEBOOK_ONLY and it will

start a Snakeface session.

’$ snakeface

However, if your center is running Snakeface as a service, you will need to ask for a notebook explicitly:

’$ snakeface notebook

For either of the two you can optionally specify a port:

10

Chapter 3. Resources

Snakeface Documentation, Release 0.0.18

$ snakeface notebook —--port 5555
$ snakeface —--port 5555

For the notebook install, you will be given a token in your console, and you can copy paste it into the interface to log
in.

WELCOME TO SNAKEFACE! -

The notebook token should be printed in the console where you ran the application.

You can then browse to localhost at the port specified to see the interface! The first prompt will ask you to create a
collection, which is a grouping of workflows. You might find it useful to organize your projects.

U).

Dashboard Workflows Settings Log out

You don't have any Snakemake workflows. Why don't you create one?

Next, click on the button to create a new workflow. The next form will provide input fields for all arguments provided
by your Snakemake installation. You can select the blue buttons at the top (they are always at the top) to jump to a
section, and see the command being previewed at the bottom. The command will always update when you make a
new selection.

3.1. Getting Started 11

Snakeface Documentation, Release 0.0.18

Create Workflow

[man | execumon | crourme | weponrs | urumes | oureur | sewavion | conoa | smeucarry | envimonment wooutes

Main
NauE

Dinosaur Workflow

WORKDIRS*
/

Your working directory must be within the path where you launched your notebook.

EXECUTION

TARGET

Targets to build. May be rues or fies.

and 2

large workfow, use —dry-run —quiet tojustprint a summary ofthe DAG of jobs

PROFILE

e/snakefile --local

/github.con/snakenal

snakemake
checks-per-second 16

-snakefile /home/vanessa/Desktop/Code/snake:
attempt 1 --wrapper-prefix http

ler gre

--ums -monitor MEtp://127.9.0.1:5000
onda-Frontend cenda

seheduler-il,

p-solver COIN_CMD --max-inventory-time 20 -

Workflow: Settings ogout fam
Workflows Settings Log out K3

latency wait 5 --max-jobs-per-second 16 --max-status-

Note that if you start running your notebook in a location without any Snakefiles, you will get a message that tells
you to create one first. A Snakefile matching some pattern of snakefile* (case ignored) must be present. When you’ve
finished your workflow, click on “Run Workflow.” If the workflow is invalid (e.g., you’ve moved the Snakefile, or
provided conflicting commands) then you’ll be returned to this view with an error message. If it’s valid, you’ll be

redirected to a page to monitor the workflow.

Workflow: 9

bwa_map)
mple: A |

i bwa_map 1
| sample: 8]

1 1 Snakefile
samtools_sort samtools_sort Workdir
Q’sﬂdex samtools_index Command

| - Return Code

; \
i beftools_call |

plot_quals

WMS_MONITOR_TOKEN

Command Line

l Interaction

all

Building DAG of jobs...
Using shell: /binbash

Provided cores: 1 (use -cores to define parallelism)
Rules claiming more threads wil be scaled down.
Job counts:

count jobs

1all

1 beftools call

Deskiop/C

Desktop/C tutorial
snakemake
--local-cores 8 --wms-monitor http://127.0.0.1:5000
--max-jobs-per-second 10 --max-status-checks-per-second 10
arg id=9

d69ab3baebbe73ca02faf42f831a003e154860dd

To interact with this workflow from the command line, export this variable
and provide the following extra arguments

--snakefile /home/vanessa/Desktop/Code/snakemake/snakemake-tutorial/Snakefile
- -max-inventory-time 20
--attempt 1

]

Workflows Settings Log out

--cores 1
--latency-wait 5
--use-conda --wms-monitor-

--wms-monitor http://127.0.0.1:5000
--wms-monitor-arg id=9

This page also has metadata for how to interact with your workflow if you choose to run it again with Snakemake from
the command line. A token and arguments for monitoring are required. At the bottom part of the page, there is a status

table that updates automatically via a Web Socket.

12

Chapter 3. Resources

Snakeface Documentation, Release 0.0.18

SHOW| 25 ¢ |ENTRIES SEARGH:
Order T+ Level Job Message
© 0 warning The flag 'directory’ used in rule all is only valid for outputs, not inputs.
© 1 m Building DAG of jobs...
© 2 all
© 3 job1
© 4 job1
status selected
job job1
order 4
© 5 Producer found, hence exceptions are ignored.
© 6 all
© 7 Producer found, hence exceptions are ignored.
© 8 m Nothing to be done.
© 9 m Complete log: fhome/vanessa/Desktop/Cs ST log/2020-12-30T223439.257769.snakemake.log
© 10 [cebug] unlocking
() 1" debug removing lock
© 12 [debug] removing lock
@ 13 [cebug] removed all locks
Showing 1 to 14 of 14 entries Previous Next

Finally, you’ll also be able to see your workflows on the dashboard page in the Workflows table.

W " ettings [—
Dashboard Workflows Settings Logout ‘g
show| s [EnTRES searcH
D & sTatus SNAKEFILE COMMAND AcTIONS
N — snakemake --snakefile /home/vanessa/Desktop/Code/snakenake/snakemake-tutorial/snakefile --local-cores 8 --wms-
5 [Error | fmom eskiop/Co nake monitor http://127.0.6.1:5060 --max-inventory-time 20 --latency-wait 5 --max-jobs-per-second 10 --max-status-checks-
Isnakemake-tutorial/Snakefile =
per-second 16 --attempt 1 --wms-monitor-arg id=5
snakemake --snakefile /home/vanessa/Desktop/Code/snakeface/Snakefile --cores 1 --local-cores 8 --wms-monitor
7 [Compietcd N Desktop/Codt http://127.0.0.1:5000 --max-inventory-time 20 --latency-wait 5 --max-jobs-per-second 10 --max-status-checks-per-
second 16 --attempt 1 --wms-monitor-arg id=7
T — snakemake --snakefile /home/vanessa/Desktop/Code/snakemake/snakemake-tutorial/Snakefile --cores 1 --local-cores 8
(Error] fmom eskiop/Co nake --wms-monitor http://127.0.0.1:5000 --max-inventory-time 26 --latency-wait 5 --max-jobs-per-second 10 --max-status-
Isnakemake-tutorial/Snakefile =
checks-per-second 10 --attempt 1 --wms-monitor-arg id=8
Showing 1 to 3 of 3 entries Previous Next

Continuing A Workflow

If you want to start a workflow from the command line to interact with a snakeface server, or you’ve already started
one with Snakeface and want it to reference the same identifier again, you can easily run snakemake to do this by
adding an environment variable for an authorization token, and a workflow id. If you look at the workflow details
page above, you’ll see that the token and command line arguments are provided for you. You might re-run an existing
workflow like this:

export WMS_MONITOR_TOKEN=a2d0d2f2-dfa8-4fd6-b98c-£3219%9a2caa8c
snakemake --cores 1 --wms-monitor http://127.0.0.1:5000 —-wms-monitor-arg id=3

3.1. Getting Started 13

Snakeface Documentation, Release 0.0.18

Workflow Reports

If you want to add a report file to the workflow, just as you would with command line Snakemake, you’ll need to install

additional dependencies first:

pip install snakemake[reports]

And then define your report.html file in the reports field.

3.1.4 Settings

Settings are defined in the settings.yml file, and are automatically populated into Snakeface. If you want a notebook,

you will likely be good using the defaults.

Table 1: Title

Name

Description

GOOGLE_ANALYTICS_SITE

The url of your website for Google Analytics, if desired

GOOGLE_ANALYTICS_ID

The identifier for Google Analytics, if desired

TWITTER_USERNAME

A Twitter username to link to in the footer.

GITHUB_REPOSITORY

A GitHub repository to link to in the footer

GITHUB_DOCUMENTATION

GitHub documentation (or other) to link to in the footer

USER_WORKFLOW_LIMIT

The maximum number of workflows to allow a user to create

USER_WORKFLOW_RUNS_LIMIT

The maximum number of running workflows to allow

USER_WORKFLOW_GLOBAL_RUNS_LIMIT

Giving a shared Snakeface interface, the total maximum allowed running at once.

NOTEBOOK_ONLY

Only allow notebooks (disables all other auth)

MAXIMUM_NOTEBOOK_JOBS

Given a notebook, the maximum number of jobs to allow running at once

WORKFLOW_UPDATE_SECONDS

How often to refresh the status table on a workflow details page

EXECUTOR_CLUSTER

Set this to non null to enable the cluster executor

EXECUTOR_GOOGLE_LIFE_SCIENCES

Set this to non null to enable the GLS executor

EXECUTOR_KUBERNETES

Set this to non null to enable the K8 executor

EXECUTOR_GA4GH_TES

Set this to non null to enable this executor

EXECUTOR_TIBANNA

Set this to non null to enable the tibanna executor

DISABLE_SINGULARITY

Disable Singularity argument groups by setting this to non null

DISABLE_CONDA

Disable Conda argument groups by setting this to non null

DISABLE_NOTEBOOKS

Disable notebook argument groups by setting this to non null

ENVIRONMENT

The global name for the deployment environment

HELP_CONTACT_URL

The help contact email or url used for the API

SENDGRID_API_KEY

Not in use yet, will allow sending email notifications

SENDGRID_SENDER_EMAIL

Not in use yet, will allow sending email notifications

DOMAIN_NAME

The server domain name, defaults to a localhost address

DOMAIN_PORT

The server port, can be overridden from the command line

REQUIRE_AUTH

Should authentication be required?

PROFILE

Set a default profile (see https://github.com/snakemake-profiles)

PROFILE

Set a default profile (see https://github.com/snakemake-profiles)

PRIVATE_ONLY

Make all workflows private (not relevant for notebooks)

ENABLE_CACHE

Enable view caching

WORKDIR

Default working directory (overridden by client and environment)

PLUGINS_LDAP_AUTH_ENABLED

Set to non null to enable

PLUGINS_PAM_AUTH_ENABLED

Set to non null to enable

PLUGINS_SAML_AUTH_ENABLED

Set to non null to enable

14

Chapter 3. Resources

https://github.com/snakemake/snakeface
https://snakemake.github.io/snakeface
https://github.com/snakemake/snakeface/issues
http://127.0.0.1
https://github.com/snakemake-profiles
https://github.com/snakemake-profiles

Snakeface Documentation, Release 0.0.18

3.1.5 Authentication

If you don’t define an authentication backend (e.g., plugins like ldap, saml, or OAuth 2), then the default authentication
model for Snakeface is akin to a jupyter notebook. You’ll be given a token to enter in the interface, and this will log
you in. This is currently the only authentication supported, as we haven’t developed the other deployment types.

3.2 Use Cases

Snakeface is intended to be flexible to different needs for your deployment. This means that you can both run it quickly
as a notebook Notebook to test a workflow, or deploy it in a cluster environment for your user base. If you have a need
for deployment that is not addressed here, please let us know

3.3 The Snakeface API

These sections detail the internal functions for Snakeface.

3.4 Internal API

These pages document the entire internal API of Snakeface.

3.4.1 snakeface package

Submodules
snakeface.argparser module
class snakeface.argparser.SnakefaceArgument (action, required=False)

Bases: object

A Snakeface argument takes an action from a parser, and is able to easily generate front end views (e.g., a form
element) for it

boolean field()
generate a boolean field (radio button) via a jinja2 template

choice_field()
generate a choice field for using a pre-loaded jinja2 template

field()
generate a form field for the argument

property field name
property is_boolean

load_template (path)
Given a path to a template file, load the template with jinja2

text field()
generate a text field for using a pre-loaded jinja2 template

update_choice_fields (updates)

3.2. Use Cases 15

https://github.com/snakemake/snakeface/issues

Snakeface Documentation, Release 0.0.18

class snakeface.argparser.SnakefaceParser
Bases: object

A Snakeface Parser is a wrapper to an argparse.Parser, and aims to make it easy to loop over arguments and
options, and generate various representations (e.g., an input field) for the interface. The point is not to use it to
parse arguments and validate, but to output all fields to a front end form.

property command
Given a loaded set of arguments, generate the command.

property errors

get (name, default=None)
A general get function to return an argument that might be nested under a group. These objects are the
same as linked in _groups.

property groups
yield arguments organized by groups, with the intention to easily map into a form on the front end. The
groups seem to have ALL arguments each, so we have to artificially separate them.

include_argument (name, group)
Given an argument name, and a group name, skip if settings disable it

load (argdict)
Load is a wrapper around set - we loop through a dictionary and set all arguments.

property required

set (name, value)
Set a value for an argument. This is typically what the user has selected.

property snakefile
snakefiles = []

to_dict ()
the opposite of load, this function exports an argument

validate ()
ensure that all required args are defined

snakeface.client module

snakeface.client.get_parser ()

snakeface.client.main ()
main entrypoint for snakeface

snakeface.apps.api module

class snakeface.apps.api.permissions.AllowAnyGet
Bases: rest_framework.permissions.BasePermission
Allows an anonymous user access for GET requests only.

has_permission (request, view)
Return True if permission is granted, False otherwise.

snakeface.apps.api.permissions.check_user_authentication (request)
Given a request, check that the user is authenticated via a token in the header.

16 Chapter 3. Resources

Snakeface Documentation, Release 0.0.18

snakeface.apps.api.pe

rmissions.get_token (request)

The same as validate_token, but return the token object to check the associated user.

class snakeface.apps.api.views.CreateWorkflow (**kwargs)
Bases: ratelimit.mixins.RatelimitMixin, rest_framework.views.APIView

Create a snakemake workflow. Given that we provide an API token, we expect the workflow model to already
be created and simply generate a run for it.

get (request)

ratelimit_block =
ratelimit_key = '
ratelimit_method
ratelimit_rate =
renderer classes

class snakeface.apps.
Bases: ratelimit.mi

Return a 200 response to

True

ip'

= 'GET'

'1000/14'

= (<class 'rest_framework.renderers.JSONRenderer'>,)

api.views.ServiceInfo (**kwargs)
xins.RatelimitMixin, rest_framework.views.APIView

indicate a running service. Note that we are not currently including all required fields.

See: https://gadgh.github.io/workflow-execution-service-schemas/docs/#operation/GetServicelnfo

get (request)

ratelimit_block = True

ratelimit_key = '
ratelimit method
ratelimit_rate =
renderer_classes

class snakeface.apps.
Bases: ratelimit.mi

ip'

= 'GET'

'1000/14"

= (<class 'rest_framework.renderers.JSONRenderer'>,)

api.views.UpdateWorkflow (**kwargs)
xins.RatelimitMixin, rest_framework.views.APIView

Update an existing snakemake workflow. Authentication is required, and the workflow must exist.

post (request)

ratelimit block = True

ratelimit_key = '
ratelimit_method
ratelimit_rate =

renderer classes

ip'
= 'POST'
'1000/14"

= (<class 'rest_framework.renderers.JSONRenderer'>,)

3.4. Internal API

17

https://ga4gh.github.io/workflow-execution-service-schemas/docs/#operation/GetServiceInfo

Snakeface Documentation, Release 0.0.18

snakeface.apps.main module

class snakeface.apps.main.consumers.WorkflowConsumer (*args, **kwargs)
Bases: channels.generic.websocket.AsyncJIsonWebsocketConsumer
async connect ()

async disconnect (close_code)
Called when a WebSocket connection is closed.

async receive (text_data)
Called with a decoded WebSocket frame.

async update_workflow_status ()

snakeface.apps.main.consumers.async_get_statuses (workflow_id)
Return a dictionary of workflow statuses on success. If the workflow doesn’t exist, then return False and we
disconnect from the socket.

snakeface.apps.main.consumers.get_statuses (workflow_id)
Return a dictionary of workflow statuses on success. If the workflow doesn’t exist, then return False and we
disconnect from the socket.

class snakeface.apps.main.forms.WorkflowForm (data=None, files=None,
auto_id="id_%s', prefix=None, ini-
tial=None, error_class=<class

'django.forms.utils.ErrorList'>,
label_suffix=None,
empty_permitted=False, instance=None,
use_required_attribute=None, ren-

derer=None)
Bases: django.forms.models.ModelForm

class Meta
Bases: object

fields = ['name', 'workdirs']

model
alias of snakeface.apps.main.models.Workflow

base _fields = {'name': <django.forms.fields.CharField object>, 'workdirs': <django.f
declared_fields = {'workdirs': <django.forms.fields.ChoiceField object>}

property media
Return all media required to render the widgets on this form.

class snakeface.apps.main.models.JSONField (verbose_name=None, name=None, pri-
mary_key=False, max_length=None,
unique=False, blank=False, null=False,
db_index=False, rel=None, default=<class
'django.db.models.fields. NOT_PROVIDED'>,
editable=True, serialize=True,
unique_for_date=None,
unique_for_month=None,
unique_for_year=None, choices=None,
help_text=", db_column=None,
db_tablespace=None, auto_created=Fualse,

validators=(), error_messages=None)
Bases: django.db.models.fields.Field

18 Chapter 3. Resources

Snakeface Documentation, Release 0.0.18

db_type (connection)
Return the database column data type for this field, for the provided connection.

from_db_value (value, expression, connection)

get_prep_value (value)
Perform preliminary non-db specific value checks and conversions.

to_python (value)
Convert the input value into the expected Python data type, raising django.core.exceptions. ValidationError
if the data can’t be converted. Return the converted value. Subclasses should override this.

value_to_string (obj)
Return a string value of this field from the passed obj. This is used by the serialization framework.

class snakeface.apps.main.models.Work£flow (*args, **kwargs)
Bases: django.db.models.base.Model

A workflow is associated with a specific git repository and one or more workflow runs.

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

add_date
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

command
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

contributors
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model):
toppings = ManyToManyField (Topping, related_name='pizzas')

Pizza.toppings and Topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

dag
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

data
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

error
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_absolute_url ()
get_label ()

3.4. Internal API 19

Snakeface Documentation, Release 0.0.18

get_next_by add_date (% field=<django.db.models.fields. DateTimeField: add_date>,
is_next=True, **kwargs)

get_next_ by modify date (*, field=<django.db.models. fields.DateTimeField: modify_date>,
is_next=True, **kwargs)

get_previous_by_ add_date (¥, field=<django.db.models.fields.DateTimeField: add_date>,
is_next=False, **kwargs)

get_previous_by modify date (¥, field=<django.db.models.fields.DateTimeField: mod-
ify_date>, is_next=False, **kwargs)

get_private_display (*, field=<django.db.models.fields.BooleanField: private>)

get_report ()
load the report file, if it exists.

get_status_display (*, field=<django.db.models fields. TextField: status>)

has_edit_permission ()
If we are running in a notebook environment, there is just one user that has edit access to anything. Other-
wise, the user must be an owner

has_report ()
returns True if the workflow command has a designated report, and the report file exists

has_view_permission ()

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

property members

property message_fields

modify_ date
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

name
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

output
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

owners
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField(Topping, related_name='pizzas')

Pizza.toppings and Topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

20

Chapter 3. Resources

Snakeface Documentation, Release 0.0.18

private
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

reset ()
Empty all run related fields to prepare for a new run.

retval
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

snakefile
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

snakemake_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

status
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

thread
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

update_command (command=None, do_save=False)
Given a command (or an automated save from the signal) update the command for the workflow.

update_dag (do_save=False)
given a snakefile, run the command to update the dag

workdir
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

workflowstatus_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

Parent.childrenis a ReverseManyToOneDescriptor instance

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

class snakeface.apps.main.models.WorkflowStatus (*args, **kwargs)
Bases: django.db.models.base.Model

A workflow status is a status message send from running a workflow

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

3.4. Internal API 21

Snakeface Documentation, Release 0.0.18

add_date
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_next_by_ add_date (% field=<django.db.models.fields. DateTimeField: add_date>,

is_next=True, **kwargs)
get_next_by modify date (¥ field=<django.db.models.fields.DateTimeField: — modify_date>,
is_next=True, **kwargs)
get_previous_by_ add_date (¥, (field=<django.db.models.fields.DateTimeField: add_date>,
is_next=False, **kwargs)
get_previous_by modify date (¥, field=<django.db.models.fields.DateTimeField: mod-
ify_date>, is_next=False, **kwargs)
id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

modify_ date
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

msg
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

workflow
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model) :
parent = ForeignKey (Parent, related_name='children')

Child.parent isaForwardManyToOneDescriptor instance.
workflow id
snakeface.apps.main.models.update_work£flow (sender, instance, **kwargs)

snakeface.apps.main.tasks.doRun (wid, uid)
The task to run a workflow

snakeface.apps.main.tasks.run_is_allowed (request)
Given a request, check that the run is allowed meaning: 1. If running a notebook, we aren’t over quota for jobs
2. If not running a notebook, we aren’t over user or global limits

snakeface.apps.main.tasks.run_workflow (request, wid, uid)
Top level function to ensure that the user has permission to do the run, and we direct to the correct function
(notebook or not written, another backend)

snakeface.apps.main.tasks.serialize_workflow_statuses (workflow)
A shared helper function to serialize a list of workflow statuses into json.

class snakeface.apps.main.utils.CommandRunner
Bases: object

Wrapper to use subprocess to run a command. This is based off of pypi vendor distlib SubprocesMixin.

22 Chapter 3. Resources

Snakeface Documentation, Release 0.0.18

reader (stream, context)
Get output and error lines and save to command runner.

reset ()
run_command (cmd, env=None, cancel_func=None, cancel_func_kwargs=None, **kwargs)

class snakeface.apps.main.utils.ThreadRunner (group=None, target=None, name=None,
args=(), kwargs=None, *, daemon=None)
Bases: threading.Thread

We need to be able to run a Snakemake job as a thread, and kill it if an exception is raised based on it’s id
set_work£flow (workflow)

property thread id
Return the id of the thread, either attributed to the class or by matching the Thread instance

snakeface.apps.main.utils.get_snakefile_choices (path=None)
Given the working directory set on init, return all discovered snakefiles.

snakeface.apps.main.utils.get_tmpfile (prefix=", suffix="")
get a temporary file with an optional prefix. By default, the file is closed (and just a name returned).

Parameters prefix (-)— prefix with this string

snakeface.apps.main.utils.get_workdir_ choices (path=None)
Given the working directory set on init, return potential subdirectories.

snakeface.apps.main.utils.read_f£file (filename)
Write some text content to a file

snakeface.apps.main.utils.write_f£ile (filename, content)
Write some text content to a file

snakeface.apps.main.views.edit_or_update_workflow (request, parser, workflow=None)
A shared function to edit or update an existing workflow.

snakeface.apps.main.views.view_workflow_report (request, wid)
If a workflow generated a report and the report exists, render it to a page

snakeface.apps.base module

snakeface.apps.base.views.warmup ()

snakeface.apps.users module

snakeface.apps.users.decorators.login_is_required (function=None, login_url=None,
redirect_field_name='next')
Decorator to extend login required to also check if a notebook auth is desired first.
class snakeface.apps.users.forms.TokenForm (data=None, files=None, auto_id="id_%s', pre-
fix=None, initial=None, error_class=<class
'django.forms.utils.ErrorList">,
label_suffix=None,
empty_permitted=False, field_order=None,
use_required_attribute=None, ren-
derer=None)
Bases: django.forms.forms.Form

base_fields = {'token': <django.forms.fields.CharField object>}

3.4. Internal API 23

Snakeface Documentation, Release 0.0.18

declared fields = {'token': <django.forms.fields.CharField object>}

property media
Return all media required to render the widgets on this form.

class snakeface.apps.users.models.CustomUserManager (*args, **kwargs)

Bases: django.contrib.auth.base_user.BaseUserManager

add_staff (user)
Intended for existing user

add_superuser (user)
Intended for existing user

create_superuser (username, email, password, **extra_fields)

create_user (username, email=None, password=None, **extra_fields)

class snakeface.apps.users.models.User (id, password, last_login, is_superuser, username,

first_name, last_name, email, is_staff, is_active,
date_joined, active, agree_terms, agree_terms_date,
notebook_token)
Bases: django.contrib.auth.models.AbstractUser
exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

active
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

agree_terms
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

agree_terms_date
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

auth_token
Accessor to the related object on the reverse side of a one-to-one relation.

In the example:

class Restaurant (Model) :
place = OneToOneField(Place, related_name='restaurant')

Place.restaurant isa ReverseOneToOneDescriptor instance.

get_credentials (provider)
return one or more credentials, or None

get_label ()

get_next_by date_joined (* field=<django.db.models.fields.DateTimeField: date_joined>,
is_next=True, **kwargs)

get_previous_by_ date_joined (% field=<django.db.models.fields. DateTimeField:
date_joined>, is_next=False, **kwargs)

24

Chapter 3. Resources

Snakeface Documentation, Release 0.0.18

get_providers ()
return a list of providers that the user has credentials for.

groups
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField (Topping, related_name='pizzas')

Pizza.toppings and Topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

has_create_permission ()
has create permission determines if the user (globally) can create new collections. By default, superusers
and admin can, along with regular users if USER_COLLECTIONS is True. Otherwise, not.

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

logentry_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

Parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

notebook_token
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <snakeface.apps.users.models.CustomUserManager object>

social_ auth
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

Parent.childrenisaReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

property token
The user token is for interaction with creating and updating workflows

user_permissions
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

3.4.

Internal API 25

Snakeface Documentation, Release 0.0.18

class Pizza (Model) :
toppings = ManyToManyField(Topping, related_name='pizzas')

Pizza.toppings and Topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

workflow_contributors
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField (Topping, related_name='pizzas')

Pizza.toppings and Topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

workflow_ owners
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField(Topping, related_name='pizzas')

Pizza.toppings and Topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

snakeface.apps.users.models.create_auth_token (sender, instance=None, created=False,
**kwargs)
Create a token for the user when the user is created (with oAuth2)

1. Assign user a token
2. Assign user to default group

Create a Profile instance for all newly created User instances. We only run on user creation to avoid having to
check for existence on each call to User.save.

snakeface.apps.users.utils.get_notebook_token (request, verbose=True)
If a notebook token isn’t defined, generate it (and print to the console) The token is used to generate a user to
log the user in.

snakeface.apps.users.utils.get_notebook_user ()
Get the notebook user, if they have logged in before.

snakeface.apps.users.utils.get_or_create_notebook_user (foken)
Get or create the notebook user. Imports are done in the function because Django startup (settings.py) uses these
functions.

snakeface.apps.users.utils.get_username ()
get the username based on the effective uid. This is for a notebook execution, and doesn’t add any additional
security, but rather is used for personalization and being able to create an associated django user.

snakeface.apps.users.views.notebook_login (request)
Given the user doesn’t have a token in the request session, ask for it.

26 Chapter 3. Resources

Snakeface Documentation, Release 0.0.18

shakeface.settings module

class snakeface.settings.Settings (dictionary)
Bases: object
convert a dictionary of settings (from yaml) into a class

snakeface.settings.generate_secret_key (filename)
A helper function to write a randomly generated secret key to file

snakeface.logger module

class snakeface.logger.ColorizingStreamHandler (nocolor=False,
stream=<_io.TextIOWrapper
name='<stderr>'
encoding="UTF-8">,
use_threads=Fualse)

Bases: 1ogging.StreamHandler
BLACK = 0

BLUE = 4

BOLD_SEQ = '\xlb[1lm'

COLOR_SEQ

"\x1b[%dm'
CYAN = 6

GREEN = 2

MAGENTA = 5

RED = 1

RESET_SEQ

"\x1b[Om'
WHITE = 7
YELLOW = 3

can_color_tty ()

mode="w'

colors = {'CRITICAL': 1, 'DEBUG': 4, 'ERROR': 1, 'INFO': 2, 'WARNING':

decorate (record)

emit (record)
Emit a record.

3}

If a formatter is specified, it is used to format the record. The record is then written to the stream with a
trailing newline. If exception information is present, it is formatted using traceback.print_exception and
appended to the stream. If the stream has an ‘encoding’ attribute, it is used to determine how to do the
output to the stream.

property is_tty

class snakeface.logger.Logger

Bases: object
cleanup ()
debug (msg)

error (msg)

3.4. Internal API 27

Snakeface Documentation, Release 0.0.18

exit (msg, return_code=1)

handler (msg)

info (msg)

location (msg)

progress (done=None, total=None)
set_level (level)

set_stream handler (stream_handler)
shellcmd (msg)

text_handler (msg)

The default snakemake log handler. Prints the output to the console. :param msg: the log message dictio-
nary :type msg: dict

warning (msg)

snakeface.logger.setup_logger (quiet=False, printshellcmds=False, nocolor="False, stdout=False,
debug=False, use_threads=False, wms_monitor=None)

28 Chapter 3. Resources

S

snakeface,
snakeface.
snakeface.

snakeface

snakeface.
snakeface.
snakeface.
snakeface.

snakeface

snakeface.
snakeface.
snakeface.
snakeface.

snakeface

snakeface.
snakeface.
snakeface.
snakeface.
.apps.users.utils, 26
snakeface.
snakeface.
snakeface.
snakeface.
snakeface.

snakeface

15

apps.api.permissions, 16

apps.api.urls, 17

apps.base

apps.main

apps.main.
apps.main.
apps.main.
.apps.main.
apps.users.decorators, 23

.apps.api.views, 17
.urls, 23
apps.base.
apps.main.
apps.main.
.apps.main.
.routing, 22

views, 23

consumers, 18

forms, 18
models, 18

tasks, 22
urls, 22
utils, 22
views, 23

apps.users.forms, 23
apps.users.models, 24
apps.users.urls, 26

apps.users.views, 26

argparser,

client, 16
logger, 27

15

settings, 27

PYTHON MODULE INDEX

29

Snakeface Documentation, Release 0.0.18

30 Python Module Index

A

active (snakeface.apps.users.models.User attribute),

24
add_date (snakeface.apps.main.models.Workflow at-
tribute), 19

add_date (snakeface.apps.main.models. WorkflowStatus
attribute), 21

add_staff () (snake-
face.apps.users.models.CustomUserManager
method), 24

add_superuser () (snake-

face.apps.users.models.CustomUserManager
method), 24

agree_terms (snakeface.apps.users.models.User at-
tribute), 24

agree_terms_date (snake-

face.apps.users.models.User attribute), 24
AllowAnyGet (class in snake-

face.apps.api.permissions), 16
async_get_statuses|() (in module snake-

face.apps.main.consumers), 18
auth_token (snakeface.apps.users.models.User
attribute), 24

B

base_fields (snake-
face.apps.main.forms. WorkflowForm attribute),
18
base_fields (snakeface.apps.users.forms.TokenForm
attribute), 23
BLACK (snakeface.logger.ColorizingStreamHandler at-
tribute), 27
(snakeface.logger.ColorizingStreamHandler
attribute), 27
BOLD_SEQ (snakeface.logger.ColorizingStreamHandler
attribute), 27

BLUE

boolean_field() (snake-
face.argparser.SnakefaceArgument — method),
15

can_color_tty () (snake-

INDEX

face.logger.ColorizingStreamHandler method),
27

check_user_authentication () (in module
snakeface.apps.api.permissions), 16

choice field() (snake-
face.argparser.SnakefaceArgument — method),

15

cleanup () (snakeface.logger.Logger method), 27

COLOR_SEQ (snakeface.logger. ColorizingStreamHandler
attribute), 27

ColorizingStreamHandler
face.logger), 27

colors (snakeface.logger.ColorizingStreamHandler at-
tribute), 27

command (snakeface.apps.main.models. Workflow
attribute), 19

command () (snakeface.argparser.SnakefaceParser
property), 16

CommandRunner (class in snakeface.apps.main.utils),

(class in snake-

22

connect () (snakeface.apps.main.consumers. Workflow Consumer
method), 18

contributors (snake-
face.apps.main.models. Workflow attribute),
19

create_auth_token () (in module snake-
face.apps.users.models), 26

create_superuser () (snake-
face.apps.users.models.CustomUserManager
method), 24

create_user () (snake-

face.apps.users.models. CustomUserManager
method), 24
CreateWorkflow (class in snakeface.apps.api.views),
17
CustomUserManager (class in
face.apps.users.models), 24
(snakeface.logger.ColorizingStreamHandler
attribute), 27

snake-

CYAN

D

dag (snakeface.apps.main.models.Workflow attribute),

31

Snakeface Documentation, Release 0.0.18

19

data (snakeface.apps.main.models.Workflow attribute),
19

db_type () (snakeface.apps.main.models.JSONField
method), 18

get_absolute_url () (snake-
face.apps.main.models. Workflow method),
19

get_credentials () (snake-

face.apps.users.models.User method), 24

debug () (snakeface.logger.Logger method), 27 get_label () (snakeface.apps.main.models.Workflow

declared_fields (snake- method), 19
face.apps.main.forms.WorkflowForm attribute), get_label () (snakeface.apps.users.models.User
18 method), 24

declared_fields (snake- get_next_by_add_date () (snake-
face.apps.users.forms. TokenForm attribute), face.apps.main.models. Workflow method),
23 19

decorate () (snakeface.logger.ColorizingStreamHandler get_next_by_add_date () (snake-
method), 277 face.apps.main.models. WorkflowStatus

disconnect () (snake- method), 22
face.apps.main.consumers. WorkflowConsumer — get_next_by_date_joined () (snake-
method), 18 face.apps.users.models.User method), 24

doRun () (in module snakeface.apps.main.tasks), 22

E

edit_or_update_workflow () (in module snake-
face.apps.main.views), 23

emit () (snakeface.logger.ColorizingStreamHandler
method), 27

error (snakeface.apps.main.models.Workflow at-
tribute), 19

error () (snakeface.logger.Logger method), 27
errors () (snakeface.argparser.SnakefaceParser prop-

erty), 16
exit () (snakeface.logger.Logger method), 27

get_next_by_modify_date () (snake-
face.apps.main.models. Workflow method),
20

get_next_by_modify_date () (snake-
face.apps.main.models. WorkflowStatus
method), 22

get_notebook_token () (in module snake-
face.apps.users.utils), 26

get_notebook_user () (in module snake-
face.apps.users.utils), 26

get_or_create_notebook_user () (in module

snakeface.apps.users.utils), 26
get_parser () (in module snakeface.client), 16

get_prep_value () (snake-
F face.apps.main.models.JSONField method),
field() (snakeface.argparser.SnakefaceArgument 1 9|
method), 15 get_previous_by_add_date () (snake-
field name () ’ (snake- face.apps.main.models. Workflow method),
- 20
ace.argparser.SnakefaceArgument property),
]1”5 &P f & property) get_previous_by_add_date () (snake-
fields (snakeface.apps.main.forms.WorkflowForm.Meta face.apps.main.models. WorkflowStatus
attribute), 18 mellhod), 22 o
from_db_value () (snake- get_previous_by_date_joined() (snake-
face.apps.main.models.JSONField method), f acle. apps-users. moldels. User method), 24
19 get_previous_by_modify_date () (snake-
face.apps.main.models. Workflow method),
G 20
generate_secret_key () (in module snake- get_preVLOus_by_.modlfy_date 0 (snake-
face.settings), 27 face.apps.main.models. WorkflowStatus
get () (snakeface.apps.api.views.CreateWorkflow Imethod), 2,2
method), 17 get_private_display () (snake-
get () (snakeface.apps.api.views.Servicelnfo method), j; cz)ce.ap ps.main.models. Workfiow method),
17 .
get () (snakeface.argparser.SnakefaceParser method), get_providers () (snake-
16 face.apps.users.models.User method), 24
get_report () (snake-
face.apps.main.models. Workflow method),
32 Index

Snakeface Documentation, Release 0.0.18

20
get_snakefile_choices|()
face.apps.main.utils), 23

(in module snake-

get_status_display () (snake-
face.apps.main.models. Workflow method),
20

get_statuses () (in module snake-
face.apps.main.consumers), 18

get_tmpfile () (in module snake-
face.apps.main.utils), 23

get_token () (in module snake-
face.apps.api.permissions), 16

get_username () (in module snake-
face.apps.users.utils), 26

get_workdir_choices () (in module snake-

face.apps.main.utils), 23

GREEN (snakeface.logger.ColorizingStreamHandler at-
tribute), 27

groups (snakeface.apps.users.models.User attribute),
25

groups () (snakeface.argparser.SnakefaceParser prop-
erty), 16

Fl

handler () (snakeface.logger.Logger method), 28
has_create_permission () (snake-
face.apps.users.models.User method), 25

has_edit_permission () (snake-
face.apps.main.models. Workflow method),
20

has_permission () (snake-

face.apps.api.permissions.AllowAnyGet
method), 16

has_report () (snake-
face.apps.main.models. Workflow method),
20

has_view_permission () (snake-
face.apps.main.models. Workflow method),

20

id (snakeface.apps.main.models. Workflow attribute), 20

id (snakeface.apps.main.models.WorkflowStatus at-
tribute), 22

id (snakeface.apps.users.models.User attribute), 25

include_argument () (snake-
face.argparser.SnakefaceParser method),
16

info () (snakeface.logger.Logger method), 28

is_boolean () (snake-
face.argparser.SnakefaceArgument property),

15
is_tty () (snakeface.logger.ColorizingStreamHandler
property), 277

J

JSONField (class in snakeface.apps.main.models), 18

L

load () (snakeface.argparser.SnakefaceParser method),
16
load_template ()
face.argparser.SnakefaceArgument
15
location () (snakeface.logger.Logger method), 28
logentry_set (snakeface.apps.users.models.User at-
tribute), 25
Logger (class in snakeface.logger), 27
login_is_required() (in module
face.apps.users.decorators), 23

(snake-
method),

snake-

M

MAGENTA (snakeface.logger.ColorizingStreamHandler
attribute), 277
main () (in module snakeface.client), 16
media () (snakeface.apps.main.forms. Workflow Form
property), 18
media () (snakeface.apps.users.forms.TokenForm prop-
erty), 24
members () (snakeface.apps.main.models. Workflow
property), 20
message_fields ()
face.apps.main.models. Workflow
20
model (snakeface.apps.main.forms.WorkflowForm.Meta
attribute), 18
modify_date (snakeface.apps.main.models. Workflow
attribute), 20
modify_date
face.apps.main.models. WorkflowStatus
tribute), 22
module
snakeface, 15
snakeface.apps
snakeface.apps
snakeface.apps.api.views, 17
snakeface.apps.base.urls, 23
snakeface.apps.base.views, 23
snakeface.apps.main.consumers, 18
snakeface.apps forms, 18
snakeface.apps models, 18
snakeface.apps. routing, 22
snakeface.apps.main.tasks, 22
snakeface.apps urls, 22
snakeface.apps utils, 22
snakeface.apps.main.views, 23
snakeface.apps.users.decorators, 23
snakeface.apps.users. forms, 23

(snake-
property),

(snake-
at-

.api.permissions, 16
.api.urls, 17

.main.
.main.
main.

.main.
.main.

Index

33

Snakeface Documentation, Release 0.0.18

snakeface.apps.users.models, 24
snakeface.apps.users.urls, 26
snakeface.apps.users.utils, 26
snakeface.apps.users.views, 26
snakeface.argparser, 15
snakeface.client, 16
snakeface.logger, 27
snakeface.settings, 27
(snakeface.apps.main.models. WorkflowStatus
attribute), 22

msg

N

name (snakeface.apps.main.models.Workflow attribute),
20

notebook_login () (in
face.apps.users.views), 26

notebook_token (snakeface.apps.users.models.User
attribute), 25

module snake-

O

objects (snakeface.apps.main.models. Workflow
attribute), 20

objects (snakeface.apps.main.models.WorkflowStatus
attribute), 22

objects (snakeface.apps.users.models.User attribute),

25

output (snakeface.apps.main.models.Workflow at-
tribute), 20

owners (snakeface.apps.main.models.Workflow at-
tribute), 20

P

post () (snakeface.apps.api.views. Update Workflow
method), 17
private (snakeface.apps.main.models. Workflow

attribute), 20
progress () (snakeface.logger.Logger method), 28

R

ratelimit_block (snake-
face.apps.api.views.CreateWorkflow attribute),
17

ratelimit_block (snake-
Jface.apps.api.views.Servicelnfo attribute),
17

ratelimit_block (snake-

face.apps.api.views.UpdateWorkflow attribute),
17

ratelimit_key (snake-
face.apps.api.views.CreateWorkflow attribute),
17

ratelimit_key
face.apps.api.views.Servicelnfo
17

(snake-
attribute),

ratelimit_key (snake-
face.apps.api.views.UpdateWorkflow attribute),
17

ratelimit_method (snake-
face.apps.api.views.CreateWorkflow attribute),
17

ratelimit_method (snake-
face.apps.api.views.Servicelnfo attribute),
17

ratelimit_method (snake-

face.apps.api.views.UpdateWorkflow attribute),

17
ratelimit_rate (snake-
face.apps.api.views.CreateWorkflow attribute),

17

ratelimit_rate (snake-
face.apps.api.views.Servicelnfo attribute),
17

ratelimit_rate (snake-

face.apps.api.views.UpdateWorkflow attribute),
17

read_file () (in module snakeface.apps.main.utils),
23

reader () (snakeface.apps.main.utils. CommandRunner
method), 22

receive () (snakeface.apps.main.consumers. Workflow Consumer

method), 18
(snakeface.logger.ColorizingStreamHandler
tribute), 27
renderer_classes (snake-

face.apps.api.views.CreateWorkflow attribute),
17

RED at-

renderer_classes (snake-
face.apps.api.views.Servicelnfo attribute),
17

renderer_classes (snake-

face.apps.api.views.UpdateWorkflow attribute),
17

required () (snakeface.argparser.SnakefaceParser
property), 16

reset () (snakeface.apps.main.models. Workflow
method), 21

reset () (snakeface.apps.main.utils. CommandRunner
method), 23

RESET_SEQ (snakeface.logger.ColorizingStreamHandler
attribute), 27

retval (snakeface.apps.main.models.Workflow at-
tribute), 21

run_command () (snake-
face.apps.main.utils. CommandRunner
method), 23

run_is_allowed () (in module snake-
face.apps.main.tasks), 22

run_workflow () (in module snake-

34

Index

Snakeface Documentation, Release 0.0.18

face.apps.main.tasks), 22

S

serialize_workflow_statuses|()
snakeface.apps.main.tasks), 22
ServicelInfo (class in snakeface.apps.api.views), 17
set () (snakeface.argparser.SnakefaceParser method),
16
set_level () (snakeface.logger.Logger method), 28
set_stream_handler () (snakeface.logger.Logger
method), 28
set_workflow ()
face.apps.main.utils. ThreadRunner
23
Settings (class in snakeface.settings), 27
setup_logger () (in module snakeface.logger), 28
shellcmd () (snakeface.logger.Logger method), 28
snakeface
module, 15
snakeface.apps.

(in module

(snake-
method),

api.permissions

module, 26
snakeface.apps.users.views
module, 26
snakeface.argparser
module, 15
snakeface.client
module, 16
snakeface.logger
module, 27
snakeface.settings
module, 27
SnakefaceArgument (class in snakeface.argparser),
15
SnakefaceParser (class in snakeface.argparser), 15
snakefile (snakeface.apps.main.models.Workflow at-
tribute), 21
snakefile () (snakeface.argparser.SnakefaceParser
property), 16
snakefiles (snakeface.argparser.SnakefaceParser at-
tribute), 16

module, 16 snakemake_id (snake-
snakeface.apps.api.urls face.apps.main.models. Workflow attribute),
module, 17 21
snakeface.apps.api.views social_auth (snakeface.apps.users.models.User at-
module, 17 tribute), 25
snakeface.apps.base.urls status (snakeface.apps.main.models.Workflow at-
module, 23 tribute), 21
snakeface.apps.base.views
module, 23 T
snakeface.apps.main.consumers text_field() (snake-
module, 18 face.argparser.SnakefaceArgument — method),
snakeface.apps.main.forms 15
module, 18 text_handler () (snakeface.logger.Logger method),
snakeface.apps.main.models 28
module, 18 thread (snakeface.apps.main.models.Workflow at-
snakeface.apps.main.routing tribute), 21
module, 22 thread_id () (snake-
snakeface.apps.main.tasks face.apps.main.utils. ThreadRunner property),
module, 22 23
snakeface.apps.main.urls ThreadRunner (class in snakeface.apps.main.utils), 23
module, 22 to_dict () (snakeface.argparser.SnakefaceParser
snakeface.apps.main.utils method), 16
module, 22 to_python () (snake-
snakeface.apps.main.views face.apps.main.models.JSONField method),
module, 23 19
snakeface.apps.users.decorators token () (snakeface.apps.users.models.User property),
module, 23 25
snakeface.apps.users.forms TokenForm (class in snakeface.apps.users.forms), 23
module, 23
snakeface.apps.users.models U
module, 24 update_choice_fields () (snake-
snakeface.apps.users.urls face.argparser.SnakefaceArgument — method),
module, 26 15
snakeface.apps.users.utils
Index 35

Snakeface Documentation, Release 0.0.18

update_command () (snake-
face.apps.main.models. Workflow method),
21

update_dag () (snake-
face.apps.main.models. Workflow method),
21

update_workflow () (in module snake-
face.apps.main.models), 22

update_workflow_status () (snake-

face.apps.main.consumers. Workflow Consumer

method), 18
UpdateWorkflow (class in snakeface.apps.api.views),
17

User (class in snakeface.apps.users.models), 24
User.DoesNotExist, 24
User.MultipleObjectsReturned, 24
user_permissions (snake-
face.apps.users.models.User attribute), 25

V

validate () (snakeface.argparser.SnakefaceParser
method), 16

value_to_string() (snake-
face.apps.main.models.JSONField method),
19

view_workflow_report () (in module snake-

face.apps.main.views), 23

W

warmup () (in module snakeface.apps.base.views), 23

warning () (snakeface.logger.Logger method), 28

WHITE (snakeface.logger.ColorizingStreamHandler at-
tribute), 27

workdir (snakeface.apps.main.models. Workflow
attribute), 21

Workflow (class in snakeface.apps.main.models), 19

work flow (snakeface.apps.main.models. WorkflowStatus
attribute), 22

Workflow.DoesNotExist, 19

Workflow.MultipleObjectsReturned, 19

workflow_contributors (snake-
face.apps.users.models.User attribute), 26

workflow_id (snake-
face.apps.main.models. WorkflowStatus at-
tribute), 22

workflow_owners (snake-

face.apps.users.models.User attribute), 26
WorkflowConsumer (class in snake-
face.apps.main.consumers), 18
WorkflowForm (class in snakeface.apps.main.forms),
18
WorkflowForm.Meta (class in
face.apps.main.forms), 18

snake-

WorkflowStatus (class in snake-
face.apps.main.models), 21

WorkflowStatus.DoesNotExist, 21

WorkflowStatus.MultipleObjectsReturned,

21

workflowstatus_set (snake-
face.apps.main.models. Workflow attribute),
21

write_file () (in module snakeface.apps.main.utils),
23

Y

YELLOW (snakeface.logger.ColorizingStreamHandler at-
tribute), 27

36

Index

	Getting started with Snakemake Interface
	Support
	Resources
	Getting Started
	Use Cases
	The Snakeface API
	Internal API

	Python Module Index
	Index

